Chemical Engineering Thermodynamics I ChE 301

Credit Hours and Term	3: 0 & 2- Every Fall/Spring	Introduction to
Prerequisite	CHEM 102	Chemical Engineering Thermodynamics
Instructor	Dr. Hamad A. Al-Turaif	
Office	Building 45, room 216	J. M. Smith H. C. M. New
Lecture Time & Room	13:00 - 14:20 S. M. 11:00 - 12:20 T. Building 45, room 104	BACKAN HILL INTERATIONAL FOITION
Textbook	Smith J.M., Van Nees H.C., Abbot M.M., Introduction to Chemical Engineering Thermodynamics, 7/e, Mc.Graw-Hill, (2005). Himmelblau D., Basic Principles and Calculations in Chemical Engineering, 6/e Prentice Hall, (2001)	David M. Himmeiblau / James B. Riggs
Office Hours	13:30 – 14:30 Su. T.	Basic Principles and Calculations in Chemical
Grade Distribution	Home Work10%Mid-terms30%Quizzes15%Performance5%Final exam40%	Engineering Seventh Edition

	Outline
2000 Catalog Description	ChE 301: Chemical Eng. Thermodynamics (1) (3 : 3 & 1) Introduction to thermodynamics concepts, first law of thermodynamics, Mass and energy balances in closed and open systems, volumetric properties of pure fluids, heat effects, humidity charts, second law of thermodynamics, entropy, Computer applications to thermodynamics problems.
Prerequisite	CHEM- 201; General chemistry (2)
Textbook	Smith J.M., Van Nees H.C., Abbot M.M., Introduction to Chemical Engineering Thermodynamics, 7/e, Mc.Graw-Hill, (2005). Himmelblau D., Basic Principles and Calculations in Chemical Engineering, 6/e Prentice Hall, (2001)

References	Wong, K.V., Thermodynamics for Engineers, CRC Press, (2000).
Goals	 To develop a student's ability to apply the first and second laws of thermodynamics to reversible and irreversible processes. To develop a student's ability to predict real behavior of gases based on equations of state and generalized Correlations. To understand the humidity charts and use it for determining the proprieties of the moist air and solve heating and cooling problems involving moist air. To give a student's the ability to apply the second law understanding to the heat engines.
Prerequisites by Topics	General Chemistry.
Topics	First law of thermodynamics. PVT behavior of pure substances. Equations of state. Heat effect. Humidity Charts. Second law of thermodynamics, reversibility.
Laboratory	None
Projects	None
ABET category content	as estimated by faculty member who prepared this course description.
Engineering science	3 credits
Engineering design	0 credit

Chemical Engineering Thermodynamics I ChE 301 Weekly Notes

Week	Topics to be covered
1	Introduction
	Dimensions and units.
	Force.
	Temperature.
	Volume.
	Pressure.

2	Work. Energy. Heat. The First Law and Other Basic Concepts Joule's Experiments. Internal Energy.
3	The First Law of Thermodynamics. Thermodynamic State and State Functions. Enthalpy. The Steady-State Flow Process.
4	Equilibrium. The Phase Rule. The reversible Process. Constant-V and Constant-P Processes. Heat Capacity.
5	Volumetric Properties of Pure FluidsPVT Behavior of Pure Substances.The Ideal Gas.
6	Virial Equations. Applications of the Virial Equations. Cubic Equation of State.
7	Generalized Correlations for Gases. Generalized Correlations for Liquids. {First Exam}
8	Heat EffectsSensible Heat Effects.Internal Energy of Ideal Gases: Microscopic View.Latent Heats of Pure Substances.Standard Heats of Reaction.
9	Standard Heat of Formation. Standard Heat of Combustion. Temperature Dependence of DH ^o . Heat Effects of Industrial Reaction.
10	Humidity Charts and Their Use Define humidity and other variables. Adiabatic cooling lines.
11	Cooling and Humidification. Combined Material and Heat Balances
	{Second Exam}

12	The Second Law of Thermodynamics Statements of the second Law. Heat Engines. Thermodynamic Temperature Scale.	
13	Entropy. Entropy Changes of an Ideal Gas. Mathematical Statement of the Second Law.	